skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pevzner, Alexandra"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Given a representation of a finite group G over some commutative base ring k, the cofixed space is the largest quotient of the representation on which the group acts trivially. If G acts by k-algebra automorphisms, then the cofixed space is a module over the ring of G-invariants. When the order of G is not invertible in the base ring, little is known about this module structure. We study the cofixed space in the case that G is the symmetric group on n letters acting on a polynomial ring by permuting its variables. When k has characteristic 0, the cofixed space is isomorphic to an ideal of the ring of symmetric polynomials in n variables. Localizing k at a prime integer p while letting n vary reveals striking behavior in these ideals. As n grows, the ideals stay stable in a sense, then jump in complexity each time n reaches a multiple of p. 
    more » « less
  2. Abstract Working in a polynomial ring , where is an arbitrary commutative ring with 1, we consider the th Veronese subalgebras , as well as natural ‐submodules inside . We develop and use characteristic‐free theory of Schur functors associated to ribbon skew diagrams as a tool to construct simple ‐equivariant minimal free ‐resolutions for the quotient ring and for these modules . These also lead to elegant descriptions of for all and for any pair of these modules . 
    more » « less